Extensions of continuous affine functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Canonical utility functions and continuous preference extensions

I define canonical utility functions via an explicit formula that inherits semicontinuity, continuity, Cauchy continuity, and uniform continuity from preferences. This construction is used to (i) show Rader’s and Debreu’s theorems in a fast and transparent way, (ii) refine these results for Cauchy and uniformly continuous preferences on a metric space X , (iii) extend such preferences from X to...

متن کامل

Irredundant lattice representations of continuous piecewise affine functions

In this paper, we revisit the lattice representation of continuous piecewise affine (PWA) function and give a formal proof of its representation ability. Based on this, we derive the irredundant lattice PWA representation through removal of redundant terms and literals. Necessary and sufficient conditions for irredundancy are proposed. Besides, we explain how to remove terms and literals in ord...

متن کامل

RIGID EXTENSIONS OF l-GROUPS OF CONTINUOUS FUNCTIONS

Let C(X,Z), C(X,Q) and C(X) denote the l-groups of integer-valued, rationalvalued and real-valued continuous functions on a topological space X, respectively. Characterizations are given for the extensions C(X,Z) 6 C(X,Q) 6 C(X) to be rigid, major, and dense.

متن کامل

Continuous extensions of functions defined on subsets of productsI,II

A subset Y of a space X is Gδ-dense if it intersects every nonempty Gδ-set. The Gδ-closure of Y in X is the largest subspace of X in which Y is Gδ-dense. The space X has a regular Gδ-diagonal if the diagonal of X is the intersection of countably many regular-closed subsets of X ×X. Consider now these results: (a) [N. Noble, 1972] every Gδ-dense subspace in a product of separable metric spaces i...

متن کامل

Convex extensions and envelopes of lower semi-continuous functions

We define a convex extension of a lower-semicontinuous function to be a convex function that is identical to the given function over a pre-specified subset of its domain. Convex extensions are not necessarily constructible or unique. We identify conditions under which a convex extension can be constructed. When multiple convex extensions exist, we characterize the tightest convex extension in a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1970

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1970.35.11